

 Navigation

 	
 index

 	
 next |

 	CubicSDR stable documentation

CubicSDR - The Manual

Version 0.2.0 Documentation

[image: CubicSDR Introduction]

Documentation Index

	Introduction
	What is CubicSDR ?

	What can I do with CubicSDR ?

	Downloads

	Supported Hardware

	Building Guides

	Reporting an Issue or suggesting improvements

	CubicSDR - Main Application Window
	Basic Feature Outline
	Main Spectrum and Waterfall

	Modem Spectrum and Waterfall

	Modem Properties

	Tuning Bar

	Modulation Selector

	Squelch

	Audio Gain

	Peak Hold

	Spectrum Averaging

	Waterfall Speed

	Manual Gain

	Status Display

	Solo

	Mute

	Delta Lock

	Direct Input

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CubicSDR stable documentation

Introduction

What is CubicSDR ?

CubicSDR is the software portion of Software Defined Radio. By Using hardware that converts RF spectrum into a digital stream we are able to build complex radios to do many types of functions in software instead of traditional hardwre.

What can I do with CubicSDR ?

Paired with a supported hardware receiver, you can use CubicSDR to explore the RF world around you. Discover Satellite transmissions, Amateur Radio, Rail, Areonautical, Shortwave, or any number of possible signals floating through the air.

Downloads

The latest release binaries for Linux, OSX and Windows can always be found on the GitHub releases page:

	CubicSDR Releases [https://www.github.com/cjcliffe/CubicSDR/releases]

Supported Hardware

CubicSDR relies on SoapySDR modules from Pothosware for hardware support. Currently SoapySDR has:

	BladeRF [https://github.com/pothosware/SoapyBladeRF].

	Osmo Devices [https://github.com/pothosware/SoapyOsmo].

	RTLSDR [https://github.com/pothosware/SoapyRTLSDR].

	SDRPlay [https://github.com/pothosware/SoapySDRPlay].

	HackRF [https://github.com/pothosware/SoapyHackRF].

	RedPitya [https://github.com/pothosware/SoapyRedPitaya].

	Airspy [https://github.com/pothosware/SoapyAirspy].

	UHD Devices [https://github.com/pothosware/SoapyUHD].

	Remote TCP [https://github.com/pothosware/SoapyRemote].

Building Guides

	Building CubicSDR for Linux

	Building CubicSDR on Windows

	Building CubicSDR on OSX

Reporting an Issue or suggesting improvements

If you would like to submit a bug report or idea for CubicSDR please use the GitHub issues page.

	GitHub Issues for CubicSDR [https://www.github.com/cjcliffe/CubicSDR/issues]

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CubicSDR stable documentation

CubicSDR - Main Application Window

[image: CubicSDR Application Window, Annotated #1]

Basic Feature Outline

Main Spectrum and Waterfall

Description

The main spectrum and waterfall display the active radio input. The display can be zoomed and navigated using the arrow keys or mouse and mouse wheel.

Zooming

Zooming is achieved by using the up and down arrow keys or the mouse wheel. Hovering on the spectrum or waterfall will target a particular frequency during zoom.

While zooming, aliases from neighbouring signals can sometimes be observed as CubicSDR uses a fixed resolution FFT and a combination of scaling and decimation for zooming; adjusting the zoom distance or center frequency can alleviate these aliases if necessary and efforts will be made to elimante them in future releases.

Visual Gain

Visual Gain can be adjusted by right clicking and dragging on the Main Spectrum; Visual Gain also affects the relative contrast in the Main Waterfall.

Right-clicking once on the Main Spectrum will reset the current Visual Gain (and clear Peak Hold history)

Pressing SHIFT and the UP / DOWN arrow keys will also fine-tune the Visual Gain.

Tuning

Basic center frequency tuning is achieved by dragging left or right on the main spectrum. The left and right arrow keys can also be used for tuning; holding the shift key will accelerate the tuning keys.

You can also use the Tuning Bar to set the center frequency directly.

Adding a Modem

If there’s currently no modem in range, hovering and clicking on the waterfall will add a new one. To add additional modems hold the shift key while placing; the color will change to green to indicate a new modem will be created (as opposed to moving an existing one which will appear in red).

There is currently no limit on the number of modems that can be added other than the available CPU and Memory resources.

Note that modems that move out of center frequency range will deactivate and re-activate later when you return to their range.

Interacting with a Modem on the Main Waterfall

Clicking a modem will make it the active modem. The active modem will appear highlighted, it will also appear red when hovering elsewhere to indicate that it’s the modem that will be affected by the next action.

Hovering a modem and dragging from it’s center will change it’s frequency. Dragging the edge of a modem will change it’s bandwidth. You can also use the Tuning Bar to adjust the active modem’s frequency and bandwidth.

When selected the active modem will be reflected in the Modem Spectrum, Modem Waterfall, Squelch, Audio Gain, Mute, Tuner Bar Frequency and anywhere else that is related to the active modem.

The active modem also related to the “Audio Output” selection in the menu; you can use this to assign individual modems to any desired audio output. The active audio output will be displayed in the upper right corner of the Scope.

Pressing ‘[‘ or ‘]’ keys will nudge the current modem by the active snap value (snap value is set/cleared by right clicking on a Tuner Bar frequency digit)

There are additional keys available when hovering the mouse over a modem, even if it’s not the active modem:

	Pressing ‘D’ will delete the modem

	Pressing ‘M’ will mute the modem

	Pressing ‘E’ will edit the modem’s label (also saved to sessions)

Modem Spectrum and Waterfall

The modem spectrum and waterfall can be used just like the main waterfall with the exception of zooming and panning features.

These views show the spectrum and waterfall from the signal feed to the active modem; this is a channelized feed from the main input and can sometimes show neighbouring artifacts from nearby channels.

Modem Properties

The modem properties are used to configure things relevant to the active modem.

All modems have the following basic properties, other options may be available depending on the modem type:

	“Audio Out” can be configured per-modem; each modem can be routed to any available audio output.

Tuning Bar

The tuning bar provides a simple way to control the active modem frequency, bandwidth and the center frequency.

Right-clicking a modem frequency digit will enable Frequency Snap. The snapped digit will be bordered in red; any drags, clicks or new modem frequencies will not tune digits below the snapped one. Additionally nudging the active modem with ‘[‘ and ‘]’ will follow the snap value. To disable snapping, right-click the digit again or right-click the 1hz increment digit.

Any of the values on the tuning bar can be adjusted in single steps by clicking the upper or lower portion of a digit. Additionally you can use the mouse wheel while hovered over a digit or drag it left or right to change value.

Holding the SHIFT key while changing a tuning bar digit will prevent any carry-over and allow you to adjust from 9->0 or 0->9 without carrying to neighbouring digits.

Modulation Selector

The modulation selector allows you to change modulation type for the active modem.

There are currently several analog modulation types available:

	
	AM: Amplitude

	
	AM with carrier signal, Default 6KHz, Min 500Hz, Max 500KHz

	
	FM: Frequency

	
	Default 200KHz bandwidth, Min 500Hz, Max 500KHz, Mono

	
	FMS: Stereo Frequency

	
	Default 200KHz, Min 100KHz, Max 500KHz, Stereo (multiplex)

	
	Properties:

	
	De-emphasis: set the de-emphasis to balance the bass and treble to intended ranges (default 75us)

	
	NBFM: Narrow-Band Frequency

	
	Default 12.5KHz, Min 500Hz, Max 500KHz, Mono

	
	LSB: Lower-Side Band

	
	Lower-Side Band of AM (no carrier), Default 2.7KHz, Min 250Hz, Max 250KHz

	
	USB: Upper-Side Band

	
	Upper-Side Band of AM (no carrier), Default 2.7KHz, Min 250Hz, Max 250KHz

	
	DSB: Dual-Side Band

	
	Same as AM but without carrier signal, Default 5.4KHz, Min 500Hz, Max 500KHz

	
	I/Q: Raw I/Q Pass-Thru (No Modulation)

	
	Raw I/Q samples that would normally go to a modem are passed through to the sound card for use elsewhere. Bandwidth is fixed to the selected sound card output frequency and will change along with it. Note that turning the Audio Gain down to a low level will disable gain completely and output the raw decimated samples.

Digital modes are a work-in-progress but will be available in future versions.

There are additional keys available for controlling the active modem’s modulation selection:

	‘A’ will select AM.

	‘F’ will cycle between FM, FMS and NBFM.

	‘L’ will select LSB.

	‘U’ will select USB.

Squelch

The Squelch meter display the active signal level; to set squelch click or drag the meter to the desired trigger point. Right-clicking the squelch meter will set it just above the current signal level.

Visible squelch floor and ceiling will be adjusted dynamically in an attempt to keep the relevant signal area in view. The set squelch level may also move with the signal when it changes but it remains at the same value.

Audio Gain

By default CubicSDR will attempt to normalize the output from all active modems; if you want to adjust the gain of one modem versus another or enhance the automatic gain performance of an amplitude modulated signal you can use the audio gain to adjust the level.

When using I/Q modulation dragging the gain to a low level will de-activate any automatic gain applied and output the original decimated signal input.

Peak Hold

Activating Peak Hold will keep a maximum level history for the main and modem spectrum.

Adjusting frequency or right-clicking the spectrum will reset the current Peak Hold history (and Visual Gain).

Pressing ‘P’ will also toggle the Peak Hold button.

Spectrum Averaging

Spectrum averaging speed can be adjusted by clicking / dragging the meter to the right of the main spectrum. Mouse wheel can also be used.

Waterfall Speed

Waterfall speed can be adjusted from 1 to 1024 lines per second by clicking / dragging the meter to the right of the main waterfall. Mouse wheel can also be used.

Waterfall history will continue to be collected and rendered at the desired rate while minimized; reducing speed before minimizing will reduce CPU load for this task.

Manual Gain

If Automatic Gain is deactivated the Manual Gain sliders will appear. Available gain levels can be adjusted by clicking/dragging or using the mouse wheel on the desired meter.

Status Display

While hovering the Status Display will display relevant tips to the currently hovered UI element or action. Hover Tips are also enabled by default but can be disabled in the Settings menu.

Solo

Enabling the Solo feature will mute all except the active modem. Selecting another modem will change the Solo focus.

Solo mode is useful when you have many modems and want to focus on a particular one. Focus to the next and previous modem can be achieved with TAB and SHIFT-TAB on the keyboard.

If modems are squelched while in Solo Mode the modem that breaks squelch will be focused and held for the duration of the squelch break.

Pressing the ‘S’ key will also toggle Solo Mode for the active modem.

Mute

The Mute button shows the current mute state of the active modem and can be used to toggle it. The ‘M’ key can also be used to toggle mute for the active modem.

Delta Lock

The Delta Lock button shows the current delta lock state of the active modem and is used to toggle it.

When a modem is delta-locked it will remain at a fixed frequency relative to the center frequency. This allows you to tune freely without changing the relative modem position.

The delta lock feature is useful in conjunction with sessions for creating band-plan relative set-ups. Changing bands via the center frequency won’t alter the active modem setup.

Pressing the ‘V’ key will also toggle Delta Lock Mode for the active modem.

Direct Input

Most numeric controls (speeds, levels, frequencies) in the CubicSDR application window can be entered directly on the keyboard. Hover over the desired value and press SPACE to open the input dialog; or just start typing a number and the dialog will appear automatically.

Pressing SPACE or typing a digit when not hovered over anything will open the Direct Input dialog for the Center Frequency.

For frequencies, Direct Input will also accept suffixes ‘Hz’, ‘Mhz’, ‘KHz’ and ‘GHz’ and will attempt to use the best suffix when presenting the existing frequency. If no suffix is used it will be assumed to be in MHz unless the value is greater than 3000, which will then default to Hz.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CubicSDR stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_images/CubicSDR-Intro.png
%7

ET

Lst

EEE: E

5]

8]

il

EX

983

sopla Toc: Builtin output

Fraquency.

Esndickh

Genter Frequensy

984

191819 0 0 |ajanel

992 993 54

2|00 oneney

95 E 6.7

191910 1 9 248

998 999 1060

_images/CubicSDR-MainWindow1-Annotated.png
LNAT - TUNER [y 98, % =80 931 apple Inc Built-in Output
udio Out

Outpu

z

UsB

DSB 4 ot ety Exrceickh 3

s 25 | /¢ N F 98900000 200000

mab6s 970 972 975 978 980 982 985 988 990 992 95 .8 1000 1002 1005 1008 10L0 1012 1015 1020 1022 1025 1028 1030 1032 1035 1038 1040 1042l o

ency. Right-drag or SHIFT+UP

_static/comment-close.png

_static/comment.png

search.html

 Navigation

 		
 index

 		CubicSDR stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

building-cubicsdr/linux.html

 Navigation

 		
 index

 		CubicSDR stable documentation »

Building CubicSDR for Linux

Basic build support (Debian)

$ sudo apt-get install git build-essential automake cmake

Basic dependencies (Debian)

$ sudo apt-get install libpulse-dev libgtk-3-dev

If you did not install your own OpenGL driver/headers (via Nvidia, AMD binaries or other) this will bring in the appropriate libs and headers:

$ sudo apt-get install freeglut3 freeglut3-dev

Build and install SoapySDR

$ git clone https://github.com/pothosware/SoapySDR.git
$ cd SoapySDR
SoapySDR$ mkdir build
build$ cd build
build$ cmake ../ -DCMAKE_BUILD_TYPE=Release
build$ make -j4
build$ sudo make install
build$ sudo ldconfig
build$ SoapySDRUtil --info #test SoapySDR install

Build and install liquid-dsp

$ git clone https://github.com/jgaeddert/liquid-dsp
liquid-dsp$ cd liquid-dsp
liquid-dsp$./bootstrap.sh
liquid-dsp$./configure --enable-fftoverride
liquid-dsp$ make -j4
liquid-dsp$ sudo make install
liquid-dsp$ sudo ldconfig

Build static wxWidgets

Note: replace ‘~/Develop/wxWidgets-staticlib’ with your own path if you prefer, remember it to be used later when building CubicSDR.

$ wget https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.0/wxWidgets-3.1.0.tar.bz2
[downloading..]
$ tar -xvjf wxWidgets-3.1.0.tar.bz2
[unpacking..]
$ cd wxWidgets-3.1.0/
wxWidgets-3.1.0$ mkdir -p ~/Develop/wxWidgets-staticlib
wxWidgets-3.1.0$./autogen.sh
wxWidgets-3.1.0$./configure --with-opengl --disable-shared --enable-monolithic --with-libjpeg --with-libtiff --with-libpng --with-zlib --disable-sdltest --enable-unicode --enable-display --enable-propgrid --disable-webkit --disable-webview --disable-webviewwebkit --prefix=`echo ~/Develop/wxWidgets-staticlib` CXXFLAGS="-std=c++0x" --with-libiconv=/usr

[configuring..]

wxWidgets-3.1.0$ make -j4 && make install

[building and installed to ~/Develop/wxWidgets-staticlib in this example]

Build CubicSDR

Note: add -DUSE_HAMLIB=1 to cmake command line to include hamlib support.

$ git clone https://github.com/cjcliffe/CubicSDR.git
CubicSDR$ cd CubicSDR
CubicSDR$ mkdir build
CubicSDR$ cd build
build$ cmake ../ -DCMAKE_BUILD_TYPE=Release -DwxWidgets_CONFIG_EXECUTABLE=~/Develop/wxWidgets-staticlib/bin/wx-config
build$ make
You can now run the build from the folder, note if you're on 32-bit linux it will be in x86/
build$ cd x64/
x64$./CubicSDR

Install CubicSDR (and launcher)

build$ sudo make install

Un-install CubicSDR

build$ sudo make uninstall

Support Modules

SoapyRTLSDR

$ sudo apt-get install librtlsdr-dev
$ git clone https://github.com/pothosware/SoapyRTLSDR.git
$ cd SoapyRTLSDR
SoapyRTLSDR$ mkdir build
SoapyRTLSDR$ cd build
build$ cmake .. -DCMAKE_BUILD_TYPE=Release
build$ make
build$ sudo make install
build$ sudo ldconfig
should now show RTL-SDR device if connected
build$ SoapySDRUtil --probe

SoapySDRPlay

Note: requires API from http://sdrplay.com/linux.html to be installed first.
** Also note that the SoapySDRPlay installer will at present time install an earlier SoapySDR binary – please re-run ‘sudo make install’ for your SoapySDR build folder to update to the build version after installing.

$ git clone https://github.com/pothosware/SoapySDRPlay.git
$ cd SoapySDRPlay
SoapySDRPlay$ mkdir build
SoapySDRPlay$ cd build
build$ cmake .. -DCMAKE_BUILD_TYPE=Release
build$ make
build$ sudo make install
build$ sudo ldconfig
build$ SoapySDRUtil --probe

		Always ensure to update, build and install SoapySDR before building dependent projects.

Ubuntu 15.10 Note:

If you’ve installed a graphics driver that includes OpenGL and your libGL.so currently points to an invalid mesa/libGL.so you may get a compiler error:

make[2]: *** No rule to make target '/usr/lib/x86_64-linux-gnu/libGL.so', needed by 'x64/CubicSDR'. Stop.

Checking the link should reveal that it’s pointing at a deleted file:

$ ls -lah /usr/lib/x86_64-linux-gnu/libGL.so
lrwxrwxrwx 1 root root 13 Oct 9 01:16 /usr/lib/x86_64-linux-gnu/libGL.so -> mesa/libGL.so

To fix the link first remove the old one:

$ sudo rm /usr/lib/x86_64-linux-gnu/libGL.so

Then check where libGL.so.1 is pointing:

$ ls -lah /usr/lib/x86_64-linux-gnu/libGL.so.1
lrwxrwxrwx 1 root root 15 Dec 20 19:03 /usr/lib/x86_64-linux-gnu/libGL.so.1 -> libGL.so.358.16

And create a new link to the same location:

$ sudo ln -s /usr/lib/x86_64-linux-gnu/libGL.so.358.16 /usr/lib/x86_64-linux-gnu/libGL.so

 © Copyright 2016.
 Created using Sphinx 1.3.5.

building-cubicsdr/windows.html

 Navigation

 		
 index

 		CubicSDR stable documentation »

Building CubicSDR on Windows

Windows7/Windows 8.1/10, Visual Studio 64-bit: – improvements welcome.

Install Visual Studio Community 2015

If you don’t already have Visual Studio 2015 you can install the free Microsoft “Visual Studio Community 2015” version available from https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx which was used for this guide.

During installation make sure you select the ‘C++’ compiler under ‘Programming Languages’ or you’ll be unable to compile the project due to the missing C++ tools.

Build wxWidgets

Download https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.0/wxWidgets-3.1.0.zip and unzip it to somewhere such as C:\MSVCDev\wxWidgets-3.1.0\

Navigate to C:\MSVCDev\wxWidgets-3.1.0\build\msw\ (or wherever you extracted) and open wx_vc14.sln.

Choose “Release” and “x64” for the build configuration and “Build Solution”. All should compile successfully and you can close the project.

Install CMake:

Download CMake from:

http://www.cmake.org/download/

For this guide I’ve used:

https://cmake.org/files/v3.6/cmake-3.6.1-win64-x64.msi

As recommended, uninstall the older CMake version first if present, then just install CMake with default or preferred options.

Install SoapySDR

Download ZIP or clone SoapySDR from https://github.com/pothosware/SoapySDR to C:\MSVCDev\SoapySDR

		Launch CMake, set source path to C:/MSVCDev/SoapySDR/

		Set destination to C:/MSVCDev/SoapySDR_win64/

		Click “Configure” and choose “Visual Studio 14 2015 Win64” and Finish

		Click “Generate”

Open “Developer Command Prompt for VS2015” by right-clicking and “Run as Administrator”.

From the prompt:

C:\> cd C:\MSVCDev
C:\MSVCDEV> cmake --build SoapySDR_win64 --config Release --target install
... Bunch of building ...
 0 Error(s)

Update your system environment variables (Search “enviornment variables” in windows 7/8/10 search) and append the following to the Path variable:

;C:\Program Files\SoapySDR\bin

Build CubicSDR:

		Clone or download ZIP from https://github.com/cjcliffe/CubicSDR/ to C:\MSVCDev\CubicSDR

		Run CMake GUI

		Choose C:\MSVCDev\CubicSDR for source.

		Choose C:\MSVCDev\CubicSDR_win64 for build folder.

		Click Configure.

		Choose “Visual Studio 14 2015 Win64” and Finish.

		Set wxWidgets_ROOT_DIR to “C:\MSVCDev\wxWidgets-3.1.0”.

		Set wxWidgets_LIB_DIR to “C:\MSVCDev\wxWidgets-3.1.0\lib\vc_x64_lib”.

Configure variables to indicate CubicSDR that modules files will be searched in the “[CubicSDR executable path]\modules” directory:

		Set BUILD_INSTALLER to 1 (selected)

		Set BUNDLE_SOAPY_MODS to 1 (selected)

		Set BUNDLE_MODS_ONLY to 1 (selected)

		Configure again, all should be good, then Generate.

		Navigate to C:\MSVCDev\CubicSDR_win64\ in explorer and open CubicSDR.sln.

		Once open select “Release” and “x64” build configuration and then “Build Solution” (F6)

		CubicSDR.exe should now be in the output folder (i.e. C:\MSVCDev\CubicSDR_win64\x64) and ready to run (minus support modules).

Build Support Modules

SoapyRTLSDR

		Clone or download ZIP from https://github.com/pothosware/SoapyRTLSDR to C:MSVCDevSoapyRTLSDR

		Download http://sdr.osmocom.org/trac/attachment/wiki/rtl-sdr/RelWithDebInfo.zip and unpack to C:\MSVCDev\rtl-sdr-release\

		Copy C:\MSVCDev\rtl-sdr-release\x64\libusb-1.0.dll and C:\MSVCDev\rtl-sdr-release\x64\rtlsdr.dll to C:\Program Files\SoapySDR\bin

		Launch CMake, set source path to C:/MSVCDev/SoapyRTLSDR/

		Set destination to C:/MSVCDev/SoapyRTLSDR_win64/

		Click “Configure” and choose “Visual Studio 14 2015 Win64” and Finish

		Set RTLSDR_INCLUDE_DIR to C:/MSVCDev/rtl-sdr-release/

		Set RTLSDR_LIBRARY to C:/MSVCDev/rtl-sdr-release/x64/rtlsdr.lib

		Click “Configure” again and then click “Generate”

Open “Developer Command Prompt for VS2015” by right-clicking and “Run as Administrator”.

From the prompt:

C:\> cd C:\MSVCDev\
C:\MSVCDEV> cmake --build SoapyRTLSDR_win64 --config Release --target install
... Bunch of building ...
 0 Error(s)

Copy the generated module file rtlsdrSupport.dll in the C:\MSVCDev\CubicSDR_win64\x64\modules directory where CubicSDR can find it.

SoapySDRPlay

		Clone or download ZIP from https://github.com/pothosware/SoapySDRPlay to C:MSVCDevSoapySDRPlay

		Download “Windows API & Hardware Driver Installer” from http://sdrplay.com/windows.html and install it with defaults.

		Copy C:\Program Files\MiricsSDR\APIx64\mir_sdr_api.dll to C:\Program Files\SoapySDRbin

Open “Developer Command Prompt for VS2015” by right-clicking and “Run as Administrator”.

From the prompt:

C:\> cd "C:\Program Files\MiricsSDR\API\x64"
C:\Program Files\MiricsSDR\API\x64> dumpbin /exports mir_sdr_api.dll > mir_sdr_api.def

Leave prompt open and edit the .def file down so it looks like this; remove some lines and prefixes and add “EXPORTS” at the top.

(reference only, these are the functions at the time of this instruction)

EXPORTS
mir_sdr_ApiVersion
mir_sdr_DownConvert
mir_sdr_Init
mir_sdr_ReadPacket
mir_sdr_ResetUpdateFlags
mir_sdr_SetDcMode
mir_sdr_SetDcTrackTime
mir_sdr_SetFs
mir_sdr_SetGr
mir_sdr_SetGrParams
mir_sdr_SetParam
mir_sdr_SetRf
mir_sdr_SetSyncUpdatePeriod
mir_sdr_SetSyncUpdateSampleNum
mir_sdr_SetTransferMode
mir_sdr_Uninit

From the prompt:

C:\Program Files\MiricsSDR\API\x64>lib /MACHINE:x64 /def:mir_sdr_api.def /OUT:mir_sdr_api.lib
Microsoft (R) Library Manager Version 14.00.23026.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Creating library mir_sdr_api.lib and object mir_sdr_api.exp
C:\Program Files\MiricsSDR\API\x64>

		Launch CMake, set source path to C:/MSVCDev/SoapySDRPlay/

		Set destination to C:/MSVCDev/SoapySDRPlay_win64/

		Click “Configure” and choose “Visual Studio 14 2015 Win64” and Finish

		Click “Generate”

From the prompt:

C:\> cd C:\MSVCDev\
C:\MSVCDEV> cmake --build SoapySDRPlay_win64 --config Release --target install
... Bunch of building ...
 0 Error(s)

Copy the generated module file sdrPlaySupport.dll in the C:\MSVCDev\CubicSDR_win64\x64\modules directory where CubicSDR can find it.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		CubicSDR stable documentation »

CubicSDR-Manual

http://cubicsdr.readthedocs.io/

To build the documentation locally from scratch:

$ pip install sphinx
$ sphinx-quickstart
$ make html

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

building-cubicsdr/osx.html

 Navigation

 		
 index

 		CubicSDR stable documentation »

Building CubicSDR on OSX

Prerequisites

You need to have XCode and macports / homebrew installed.

Install liquid-dsp

You can use MacPorts or Brew for this part.

MacPorts:

ccliffe$ sudo port install liquid-dsp cmake
.. installing ..

Homebrew:

ccliffe$ brew install automake cmake
.. installing ..
ccliffe$ git clone https://github.com/jgaeddert/liquid-dsp.git
ccliffe$ cd liquid-dsp
liquid-dsp$./bootstrap.sh
liquid-dsp$./configure --enable-fftoverride
.. configuring ..
liquid-dsp$ make -j4
.. building ..
liquid-dsp$ sudo make install
.. installing ..

Build wxWidgets

Substitute your own user paths where appropriate.

ccliffe$ mkdir ~/Dev
ccliffe$ cd ~/Dev
Dev$ mkdir wxWidgets-build
Dev$ wget -O wxWidgets-3.1.0.tar.bz2 wget https://github.com/wxWidgets/wxWidgets/releases/download/v3.1.0/wxWidgets-3.1.0.tar.bz2
Dev$ tar -xvjpf wxWidgets-3.1.0.tar.bz2
... unpacking ...
Dev$ cd wxWidgets-3.1.0
wxWidgets-3.1.0$./configure --with-opengl --disable-shared --enable-monolithic --with-libjpeg --with-libtiff --with-libpng --with-zlib --with-mac --disable-sdltest --enable-unicode --enable-display --enable-propgrid --disable-webkit --disable-webview --disable-webviewwebkit --with-macosx-version-min=10.9 --prefix=/Users/(YOUR_USERNAME)/Dev/wxWidgets-build CXXFLAGS="-std=c++0x" --with-libiconv=/usr
... configuring ...
wxWidgets-3.1.0$ make -j4 && make install
... building, installing ...

Build SoapySDR

ccliffe$ cd ~/Dev
Dev$ git clone https://github.com/pothosware/SoapySDR.git
Dev$ cd SoapySDR
SoapySDR$ mkdir build
SoapySDR$ cd build
build$ cmake .. -DCMAKE_BUILD_TYPE=Release
build$ make
build$ sudo make install
build$ SoapySDRUtil --info

Build CubicSDR

Note: add -DUSE_HAMLIB=1 to cmake command line to include hamlib support.

ccliffe$ git clone https://github.com/cjcliffe/CubicSDR.git
.. cloning ..
ccliffe$ cd CubicSDR
ccliffe$ mkdir build
ccliffe$ cd build
build$ cmake ../ -DwxWidgets_CONFIG_EXECUTABLE=/Users/(YOUR_USERNAME)/wxWidgets/wxWidgets-staticlib/bin/wx-config -DCMAKE_BUILD_TYPE=Release -DBUNDLE_APP=1 -DCPACK_BINARY_DRAGNDROP=1
... generating ...
-- Build files have been written to: .../CubicSDR/build
build$ cpack
.. compiling / bundling ..

CubicSDR.app should now be built as x64/CubicSDR.app as well as a .DMG bundle (and possibly some other default bundles)

Example Support Modules:

SoapyRTLSDR

ccliffe$ cd ~/Dev
Dev$ sudo port install rtl-sdr
Dev$ git clone https://github.com/pothosware/SoapyRTLSDR.git
Dev$ cd SoapyRTLSDR
SoapyRTLSDR$ mkdir build
SoapyRTLSDR$ cd build
build$ cmake .. -DCMAKE_BUILD_TYPE=Release
build$ make
build$ sudo make install
build$ SoapySDRUtil --probe

SoapySDRPlay

(though usually latest SoapySDRPlay package will be available from www.sdrplay.com/mac.html)

ccliffe$ cd ~/Dev
Dev$ git clone https://github.com/pothosware/SoapySDRPlay.git
Dev$ cd SoapySDRPlay
SoapySDRPlay$ mkdir build
SoapySDRPlay$ cd build
build$ cmake .. -DCMAKE_BUILD_TYPE=Release
build$ make
build$ sudo make install
build$ SoapySDRUtil --probe

Always ensure to update, build and install SoapySDR before building dependent projects.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

